Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1210146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546246

RESUMO

Metabolite genome-wide association studies (mGWASs) are increasingly used to discover the genetic basis of target phenotypes in plants such as Populus trichocarpa, a biofuel feedstock and model woody plant species. Despite their growing importance in plant genetics and metabolomics, few mGWASs are experimentally validated. Here, we present a functional genomics workflow for validating mGWAS-predicted enzyme-substrate relationships. We focus on uridine diphosphate-glycosyltransferases (UGTs), a large family of enzymes that catalyze sugar transfer to a variety of plant secondary metabolites involved in defense, signaling, and lignification. Glycosylation influences physiological roles, localization within cells and tissues, and metabolic fates of these metabolites. UGTs have substantially expanded in P. trichocarpa, presenting a challenge for large-scale characterization. Using a high-throughput assay, we produced substrate acceptance profiles for 40 previously uncharacterized candidate enzymes. Assays confirmed 10 of 13 leaf mGWAS associations, and a focused metabolite screen demonstrated varying levels of substrate specificity among UGTs. A substrate binding model case study of UGT-23 rationalized observed enzyme activities and mGWAS associations, including glycosylation of trichocarpinene to produce trichocarpin, a major higher-order salicylate in P. trichocarpa. We identified UGTs putatively involved in lignan, flavonoid, salicylate, and phytohormone metabolism, with potential implications for cell wall biosynthesis, nitrogen uptake, and biotic and abiotic stress response that determine sustainable biomass crop production. Our results provide new support for in silico analyses and evidence-based guidance for in vivo functional characterization.

2.
Biotechnol Biofuels Bioprod ; 16(1): 41, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899393

RESUMO

BACKGROUND: High-throughput metabolomics analytical methodology is needed for population-scale studies of bioenergy-relevant feedstocks such as poplar (Populus sp.). Here, the authors report the relative abundance of extractable aromatic metabolites in Populus trichocarpa leaves rapidly estimated using pyrolysis-molecular beam mass spectrometry (py-MBMS). Poplar leaves were analyzed in conjunction with and validated by GC/MS analysis of extracts to determine key spectral features used to build PLS models to predict the relative composition of extractable aromatic metabolites in whole poplar leaves. RESULTS: The Pearson correlation coefficient for the relative abundance of extractable aromatic metabolites based on ranking between GC/MS analysis and py-MBMS analysis of the Boardman leaf set was 0.86 with R2 = 0.76 using a simplified prediction approach from select ions in MBMS spectra. Metabolites most influential to py-MBMS spectral features in the Clatskanie set included the following compounds: catechol, salicortin, salicyloyl-coumaroyl-glucoside conjugates, α-salicyloylsalicin, tremulacin, as well as other salicylates, trichocarpin, salicylic acid, and various tremuloidin conjugates. Ions in py-MBMS spectra with the highest correlation to the abundance of extractable aromatic metabolites as determined by GC/MS analysis of extracts, included m/z 68, 71, 77, 91, 94, 105, 107, 108, and 122, and were used to develop the simplified prediction approach without PLS models or a priori measurements. CONCLUSIONS: The simplified py-MBMS method is capable of rapidly screening leaf tissue for relative abundance of extractable aromatic secondary metabolites to enable prioritization of samples in large populations requiring comprehensive metabolomics that will ultimately inform plant systems biology models and advance the development of optimized biomass feedstocks for renewable fuels and chemicals.

3.
Appl Spectrosc ; 76(8): 937-945, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35549523

RESUMO

This work extends a previous percentage level concentration study of the optical emission spectra for six rare earth elements, europium (Eu), gadolinium (Gd), lanthanum (La), praseodymium (Pr), neodymium (Nd), and samarium (Sm), along with the transition metal, yttrium (Y) using laser-induced breakdown spectroscopy (LIBS). The concentration of these six rare earth elements and yttrium has been attempted for the first time systematically down to parts per million (ppm) concentration levels ranging from 30 to 300 ppm. The authors have developed multivariate models for each element capable of predicting concentration with acceptable to excellent levels of accuracy. Additionally, partial least squares regression coefficients were used to identify key spectral features able to be used in this lower concentration regime. This study has demonstrated that it is conceivable to quantify the six rare earth elements along with yttrium at low concentrations in the parts per million levels.


Assuntos
Európio , Ítrio , Lasers , Análise Espectral
4.
Front Plant Sci ; 10: 1249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649710

RESUMO

Understanding the regulatory network controlling cell wall biosynthesis is of great interest in Populus trichocarpa, both because of its status as a model woody perennial and its importance for lignocellulosic products. We searched for genes with putatively unknown roles in regulating cell wall biosynthesis using an extended network-based Lines of Evidence (LOE) pipeline to combine multiple omics data sets in P. trichocarpa, including gene coexpression, gene comethylation, population level pairwise SNP correlations, and two distinct SNP-metabolite Genome Wide Association Study (GWAS) layers. By incorporating validation, ranking, and filtering approaches we produced a list of nine high priority gene candidates for involvement in the regulation of cell wall biosynthesis. We subsequently performed a detailed investigation of candidate gene GROWTH-REGULATING FACTOR 9 (PtGRF9). To investigate the role of PtGRF9 in regulating cell wall biosynthesis, we assessed the genome-wide connections of PtGRF9 and a paralog across data layers with functional enrichment analyses, predictive transcription factor binding site analysis, and an independent comparison to eQTN data. Our findings indicate that PtGRF9 likely affects the cell wall by directly repressing genes involved in cell wall biosynthesis, such as PtCCoAOMT and PtMYB.41, and indirectly by regulating homeobox genes. Furthermore, evidence suggests that PtGRF9 paralogs may act as transcriptional co-regulators that direct the global energy usage of the plant. Using our extended pipeline, we show multiple lines of evidence implicating the involvement of these genes in cell wall regulatory functions and demonstrate the value of this method for prioritizing candidate genes for experimental validation.

5.
Plant Physiol ; 181(1): 63-84, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289215

RESUMO

Lignin provides essential mechanical support for plant cell walls but decreases the digestibility of forage crops and increases the recalcitrance of biofuel crops. Attempts to modify lignin content and/or composition by genetic modification often result in negative growth effects. Although several studies have attempted to address the basis for such effects in individual transgenic lines, no common mechanism linking lignin modification with perturbations in plant growth and development has yet been identified. To address whether a common mechanism exists, we have analyzed transposon insertion mutants resulting in independent loss of function of five enzymes of the monolignol pathway, as well as one double mutant, in the model legume Medicago truncatula These plants exhibit growth phenotypes from essentially wild type to severely retarded. Extensive phenotypic, transcriptomic, and metabolomics analyses, including structural characterization of differentially expressed compounds, revealed diverse phenotypic consequences of lignin pathway perturbation that were perceived early in plant development but were not predicted by lignin content or composition alone. Notable phenotypes among the mutants with severe growth impairment were increased trichome numbers, accumulation of a variety of triterpene saponins, and extensive but differential ectopic expression of defense response genes. No currently proposed model explains the observed phenotypes across all lines. We propose that reallocation of resources into defense pathways is linked to the severity of the final growth phenotype in monolignol pathway mutants of M. truncatula, although it remains unclear whether this is a cause or an effect of the growth impairment.


Assuntos
Lignina/metabolismo , Medicago truncatula/fisiologia , Biocombustíveis , Transporte Biológico , Parede Celular/química , Parede Celular/metabolismo , Produtos Agrícolas , Expressão Ectópica do Gene , Perfilação da Expressão Gênica , Lignina/química , Medicago truncatula/química , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Metabolômica , Mutação , Fenótipo , Folhas de Planta/química , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia
6.
Front Genet ; 10: 417, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134130

RESUMO

Various patterns of multi-phenotype associations (MPAs) exist in the results of Genome Wide Association Studies (GWAS) involving different topologies of single nucleotide polymorphism (SNP)-phenotype associations. These can provide interesting information about the different impacts of a gene on closely related phenotypes or disparate phenotypes (pleiotropy). In this work we present MPA Decomposition, a new network-based approach which decomposes the results of a multi-phenotype GWAS study into three bipartite networks, which, when used together, unravel the multi-phenotype signatures of genes on a genome-wide scale. The decomposition involves the construction of a phenotype powerset space, and subsequent mapping of genes into this new space. Clustering of genes in this powerset space groups genes based on their detailed MPA signatures. We show that this method allows us to find multiple different MPA and pleiotropic signatures within individual genes and to classify and cluster genes based on these SNP-phenotype association topologies. We demonstrate the use of this approach on a GWAS analysis of a large population of 882 Populus trichocarpa genotypes using untargeted metabolomics phenotypes. This method should prove invaluable in the interpretation of large GWAS datasets and aid in future synthetic biology efforts designed to optimize phenotypes of interest.

7.
Ann Bot ; 124(4): 617-626, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30689716

RESUMO

BACKGROUND AND AIMS: The use of woody crops for Quad-level (approx. 1 × 1018 J) energy production will require marginal agricultural lands that experience recurrent periods of water stress. Populus species have the capacity to increase dehydration tolerance by lowering osmotic potential via osmotic adjustment. The aim of this study was to investigate how the inherent genetic potential of a Populus clone to respond to drought interacts with the nature of the drought to determine the degree of biochemical response. METHODS: A greenhouse drought stress study was conducted on Populus deltoides 'WV94' and the resulting metabolite profiles of leaves were determined by gas chromatography-mass spectrometry following trimethylsilylation for plants subjected to cyclic mild (-0.5 MPa pre-dawn leaf water potential) drought vs. cyclic severe (-1.26 MPa) drought in contrast to well-watered controls (-0.1 MPa) after two or four drought cycles, and in contrast to plants subjected to acute drought, where plants were desiccated for up to 8 d. KEY RESULTS: The nature of drought (cyclic vs. acute), frequency of drought (number of cycles) and the severity of drought (mild vs. severe) all dictated the degree of osmotic adjustment and the nature of the organic solutes that accumulated. Whereas cyclic drought induced the largest responses in primary metabolism (soluble sugars, organic acids and amino acids), acute onset of prolonged drought induced the greatest osmotic adjustment and largest responses in secondary metabolism, especially populosides (hydroxycinnamic acid conjugates of salicin). CONCLUSIONS: The differential adaptive metabolite responses in cyclic vs. acute drought suggest that stress acclimation occurs via primary metabolism in response to cyclic drought, whereas expanded metabolic plasticity occurs via secondary metabolism following severe, acute drought. The shift in carbon partitioning to aromatic metabolism with the production of a diverse suite of higher order salicylates lowers osmotic potential and increases the probability of post-stress recovery.


Assuntos
Secas , Populus , Desidratação , Humanos , Folhas de Planta , Água
8.
Biotechnol Biofuels ; 10: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28077967

RESUMO

BACKGROUND: Clostridium thermocellum is capable of solubilizing and converting lignocellulosic biomass into ethanol. Although much of the work-to-date has centered on characterizing this microbe's growth on model cellulosic substrates, such as cellobiose, Avicel, or filter paper, it is vitally important to understand its metabolism on more complex, lignocellulosic substrates to identify relevant industrial bottlenecks that could undermine efficient biofuel production. To this end, we have examined a time course progression of C. thermocellum grown on switchgrass to assess the metabolic and protein changes that occur during the conversion of plant biomass to ethanol. RESULTS: The most striking feature of the metabolome was the observed accumulation of long-chain, branched fatty acids over time, implying an adaptive restructuring of C. thermocellum's cellular membrane as the culture progresses. This is undoubtedly a response to the gradual accumulation of lignocellulose-derived inhibitory compounds as the organism deconstructs the switchgrass to access the embedded cellulose. Corroborating the metabolomics data, proteomic analysis revealed a corresponding time-dependent increase in various enzymes, including those involved in the interconversion of branched amino acids valine, leucine, and isoleucine to iso- and anteiso-fatty acid precursors. Additionally, the metabolic accumulation of hemicellulose-derived sugars and sugar alcohols concomitant with increased abundance of enzymes involved in C5 sugar metabolism/pentose phosphate pathway indicates that C. thermocellum shifts glycolytic intermediates to alternate pathways to modulate overall carbon flux in response to C5 sugar metabolites that increase during lignocellulose deconstruction. CONCLUSIONS: Integrated omic platforms provided complementary systems biological information that highlight C. thermocellum's specific response to cytotoxic inhibitors released during the deconstruction and utilization of switchgrass. These additional viewpoints allowed us to fully realize the level to which the organism adapts to an increasingly challenging culture environment-information that will prove critical to C. thermocellum's industrial efficacy.

9.
Phytochemistry ; 112: 170-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25107662

RESUMO

Pinoresinol reductase (PrR) catalyzes the conversion of the lignan (-)-pinoresinol to (-)-lariciresinol in Arabidopsis thaliana, where it is encoded by two genes, PrR1 and PrR2, that appear to act redundantly. PrR1 is highly expressed in lignified inflorescence stem tissue, whereas PrR2 expression is barely detectable in stems. Co-expression analysis has indicated that PrR1 is co-expressed with many characterized genes involved in secondary cell wall biosynthesis, whereas PrR2 expression clusters with a different set of genes. The promoter of the PrR1 gene is regulated by the secondary cell wall related transcription factors SND1 and MYB46. The loss-of-function mutant of PrR1 shows, in addition to elevated levels of pinoresinol, significantly decreased lignin content and a slightly altered lignin structure with lower abundance of cinnamyl alcohol end groups. Stimulated Raman scattering (SRS) microscopy analysis indicated that the lignin content of the prr1-1 loss-of-function mutant is similar to that of wild-type plants in xylem cells, which exhibit a normal phenotype, but is reduced in the fiber cells. Together, these data suggest an association of the lignan biosynthetic enzyme encoded by PrR1 with secondary cell wall biosynthesis in fiber cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Parede Celular/metabolismo , Lignina/metabolismo , Fatores de Transcrição/metabolismo , Transporte Biológico , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas , Lignanas/biossíntese , Lignina/biossíntese
10.
Mol Plant Microbe Interact ; 27(6): 546-56, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24548064

RESUMO

Within boreal and temperate forest ecosystems, the majority of trees and shrubs form beneficial relationships with mutualistic ectomycorrhizal (ECM) fungi that support plant health through increased access to nutrients as well as aiding in stress and pest tolerance. The intimate interaction between fungal hyphae and plant roots results in a new symbiotic "organ" called the ECM root tip. Little is understood concerning the metabolic reprogramming that favors the formation of this hybrid tissue in compatible interactions and what prevents the formation of ECM root tips in incompatible interactions. We show here that the metabolic changes during favorable colonization between the ECM fungus Laccaria bicolor and its compatible host, Populus trichocarpa, are characterized by shifts in aromatic acid, organic acid, and fatty acid metabolism. We demonstrate that this extensive metabolic reprogramming is repressed in incompatible interactions and that more defensive compounds are produced or retained. We also demonstrate that L. bicolor can metabolize a number of secreted defensive compounds and that the degradation of some of these compounds produces immune response metabolites (e.g., salicylic acid from salicin). Therefore, our results suggest that the metabolic responsiveness of plant roots to L. bicolor is a determinant factor in fungus-host interactions.


Assuntos
Laccaria/fisiologia , Metabolômica , Micorrizas/fisiologia , Proteínas de Plantas/metabolismo , Populus/metabolismo , Benzoatos/metabolismo , Evolução Biológica , Ácidos Carboxílicos/metabolismo , Ácidos Graxos/metabolismo , Hifas , Redes e Vias Metabólicas , Mutação , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Populus/genética , Populus/microbiologia , Simbiose
11.
J Ind Microbiol Biotechnol ; 40(7): 725-34, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23645383

RESUMO

Clostridium thermocellum is a thermophilic, cellulolytic anaerobe that is a candidate microorganism for industrial biofuels production. Strains with mutations in genes associated with production of L-lactate (Δldh) and/or acetate (Δpta) were characterized to gain insight into the intracellular processes that convert cellobiose to ethanol and other fermentation end-products. Cellobiose-grown cultures of the Δldh strain had identical biomass accumulation, fermentation end-products, transcription profile, and intracellular metabolite concentrations compared to its parent strain (DSM1313 Δhpt Δspo0A). The Δpta-deficient strain grew slower and had 30 % lower final biomass concentration compared to the parent strain, yet produced 75 % more ethanol. A Δldh Δpta double-mutant strain evolved for faster growth had a growth rate and ethanol yield comparable to the parent strain, whereas its biomass accumulation was comparable to Δpta. Free amino acids were secreted by all examined strains, with both Δpta strains secreting higher amounts of alanine, valine, isoleucine, proline, glutamine, and threonine. Valine concentration for Δldh Δpta reached 5 mM by the end of growth, or 2.7 % of the substrate carbon utilized. These secreted amino acid concentrations correlate with increased intracellular pyruvate concentrations, up to sixfold in the Δpta and 16-fold in the Δldh Δpta strain. We hypothesize that the deletions in fermentation end-product pathways result in an intracellular redox imbalance, which the organism attempts to relieve, in part by recycling NADP⁺ through increased production of amino acids.


Assuntos
Clostridium thermocellum/metabolismo , Fermentação , Ácido Acético/metabolismo , Aminoácidos/metabolismo , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/crescimento & desenvolvimento , Bactérias Anaeróbias/metabolismo , Biomassa , Celobiose/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/crescimento & desenvolvimento , Etanol/metabolismo , Ácido Láctico/metabolismo
12.
Biotechnol Biofuels ; 5(1): 81, 2012 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-23146305

RESUMO

BACKGROUND: The inherent recalcitrance of lignocellulosic biomass is one of the major economic hurdles for the production of fuels and chemicals from biomass. Additionally, lignin is recognized as having a negative impact on enzymatic hydrolysis of biomass, and as a result much interest has been placed on modifying the lignin pathway to improve bioconversion of lignocellulosic feedstocks. RESULTS: Down-regulation of the caffeic acid 3-O-methyltransferase (COMT) gene in the lignin pathway yielded switchgrass (Panicum virgatum) that was more susceptible to bioconversion after dilute acid pretreatment. Here we examined the response of these plant lines to milder pretreatment conditions with yeast-based simultaneous saccharification and fermentation and a consolidated bioprocessing approach using Clostridium thermocellum, Caldicellulosiruptor bescii and Caldicellulosiruptor obsidiansis. Unlike the S. cerevisiae SSF conversions, fermentations of pretreated transgenic switchgrass with C. thermocellum showed an apparent inhibition of fermentation not observed in the wild-type switchgrass. This inhibition can be eliminated by hot water extraction of the pretreated biomass, which resulted in superior conversion yield with transgenic versus wild-type switchgrass for C. thermocellum, exceeding the yeast-based SSF yield. Further fermentation evaluation of the transgenic switchgrass indicated differential inhibition for the Caldicellulosiruptor sp. strains, which could not be rectified by additional processing conditions. Gas chromatography-mass spectrometry (GC-MS) metabolite profiling was used to examine the fermentation broth to elucidate the relative abundance of lignin derived aromatic compounds. The types and abundance of fermentation-derived-lignin constituents varied between C. thermocellum and each of the Caldicellulosiruptor sp. strains. CONCLUSIONS: The down-regulation of the COMT gene improves the bioconversion of switchgrass relative to the wild-type regardless of the pretreatment condition or fermentation microorganism. However, bacterial fermentations demonstrated strain-dependent sensitivity to the COMT transgenic biomass, likely due to additional soluble lignin pathway-derived constituents resulting from the COMT gene disruption. Removal of these inhibitory constituents permitted completion of fermentation by C. thermocellum, but not by the Caldicellulosiruptor sp. strains. The reason for this difference in performance is currently unknown.

13.
Biotechnol Biofuels ; 5(1): 71, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22998926

RESUMO

BACKGROUND: Down-regulation of the caffeic acid 3-O-methyltransferase EC 2.1.1.68 (COMT) gene in the lignin biosynthetic pathway of switchgrass (Panicum virgatum) resulted in cell walls of transgenic plants releasing more constituent sugars after pretreatment by dilute acid and treatment with glycosyl hydrolases from an added enzyme preparation and from Clostridium thermocellum. Fermentation of both wild-type and transgenic switchgrass after milder hot water pretreatment with no water washing showed that only the transgenic switchgrass inhibited C. thermocellum. Gas chromatography-mass spectrometry (GCMS)-based metabolomics were undertaken on cell wall aqueous extracts to determine the nature of the microbial inhibitors. RESULTS: GCMS confirmed the increased concentration of a number of phenolic acids and aldehydes that are known inhibitors of microbial fermentation. Metabolomic analyses of the transgenic biomass additionally revealed the presence of a novel monolignol-like metabolite, identified as trans-3, 4-dimethoxy-5-hydroxycinnamyl alcohol (iso-sinapyl alcohol) in both non-pretreated, as well as hot water pretreated samples. iso-Sinapyl alcohol and its glucoside were subsequently generated by organic synthesis and the identity of natural and synthetic materials were confirmed by mass spectrometric and NMR analyses. The additional novel presence of iso-sinapic acid, iso-sinapyl aldehyde, and iso-syringin suggest the increased activity of a para-methyltransferase, concomitant with the reduced COMT activity, a strict meta-methyltransferase. Quantum chemical calculations were used to predict the most likely homodimeric lignans generated from dehydration reactions, but these products were not evident in plant samples. CONCLUSIONS: Down-regulation of COMT activity in switchgrass resulted in the accumulation of previously undetected metabolites resembling sinapyl alcohol and its related metabolites, but that are derived from para-methylation of 5-hydroxyconiferyl alcohol, and related precursors and products; the accumulation of which suggests altered metabolism of 5-hydroxyconiferyl alcohol in switchgrass. Given that there was no indication that iso-sinapyl alcohol was integrated in cell walls, it is considered a monolignol analog. Diversion of substrates from sinapyl alcohol to free iso-sinapyl alcohol, its glucoside, and associated upstream lignin pathway changes, including increased phenolic aldehydes and acids, are together associated with more facile cell wall deconstruction, and to the observed inhibitory effect on microbial growth. However, iso-sinapyl alcohol and iso-sinapic acid, added separately to media, were not inhibitory to C. thermocellum cultures.

14.
Mol Plant Microbe Interact ; 25(6): 765-78, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22375709

RESUMO

Colonization of plants by nonpathogenic Pseudomonas fluorescens strains can confer enhanced defense capacity against a broad spectrum of pathogens. Few studies, however, have linked defense pathway regulation to primary metabolism and physiology. In this study, physiological data, metabolites, and transcript profiles are integrated to elucidate how molecular networks initiated at the root-microbe interface influence shoot metabolism and whole-plant performance. Experiments with Arabidopsis thaliana were performed using the newly identified P. fluorescens GM30 or P. fluorescens Pf-5 strains. Co-expression networks indicated that Pf-5 and GM30 induced a subnetwork specific to roots enriched for genes participating in RNA regulation, protein degradation, and hormonal metabolism. In contrast, only GM30 induced a subnetwork enriched for calcium signaling, sugar and nutrient signaling, and auxin metabolism, suggesting strain dependence in network architecture. In addition, one subnetwork present in shoots was enriched for genes in secondary metabolism, photosynthetic light reactions, and hormone metabolism. Metabolite analysis indicated that this network initiated changes in carbohydrate and amino acid metabolism. Consistent with this, we observed strain-specific responses in tryptophan and phenylalanine abundance. Both strains reduced host plant carbon gain and fitness, yet provided a clear fitness benefit when plants were challenged with the pathogen P. syringae DC3000.


Assuntos
Arabidopsis/classificação , Arabidopsis/microbiologia , Fotossíntese/fisiologia , Doenças das Plantas/imunologia , Pseudomonas fluorescens/fisiologia , Arabidopsis/metabolismo , Sinalização do Cálcio , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Interações Hospedeiro-Patógeno , Filogenia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Pseudomonas fluorescens/genética , RNA Fúngico/genética , RNA Fúngico/metabolismo
15.
Appl Opt ; 47(31): G158-65, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19122698

RESUMO

Laser-induced breakdown spectroscopy (LIBS) is being proposed more and more as a high-throughput technology to assess the elemental composition of materials. When a specific element is of interest, semiquantification is possible by building a calibration model using the emission line intensity of this element for known samples. However, a unique element has usually more than one emission line, and there are many examples where several emission lines used in combination give dramatically better results than any of the individual variables used alone. With a multivariate approach, models can be constructed that take into account all the emission lines related to a specific element; therefore more robust models can be developed. In this work, chemometric methods such as principal component analysis and partial least squares are proposed to resolve and extract useful information from the LIBS spectral data collected on biological materials.

16.
Appl Environ Microbiol ; 72(1): 890-900, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16391131

RESUMO

The physiology and transcriptome dynamics of the metal ion-reducing bacterium Shewanella oneidensis strain MR-1 in response to nonradioactive strontium (Sr) exposure were investigated. Studies indicated that MR-1 was able to grow aerobically in complex medium in the presence of 180 mM SrCl2 but showed severe growth inhibition at levels above that concentration. Temporal gene expression profiles were generated from aerobically grown, mid-exponential-phase MR-1 cells shocked with 180 mM SrCl2 and analyzed for significant differences in mRNA abundance with reference to data for nonstressed MR-1 cells. Genes with annotated functions in siderophore biosynthesis and iron transport were among the most highly induced (>100-fold [P < 0.05]) open reading frames in response to acute Sr stress, and a mutant (SO3032::pKNOCK) defective in siderophore production was found to be hypersensitive to SrCl2 exposure, compared to parental and wild-type strains. Transcripts encoding multidrug and heavy metal efflux pumps, proteins involved in osmotic adaptation, sulfate ABC transporters, and assimilative sulfur metabolism enzymes also were differentially expressed following Sr exposure but at levels that were several orders of magnitude lower than those for iron transport genes. Precipitate formation was observed during aerobic growth of MR-1 in broth cultures amended with 50, 100, or 150 mM SrCl2 but not in cultures of the SO3032::pKNOCK mutant or in the abiotic control. Chemical analysis of this precipitate using laser-induced breakdown spectroscopy and static secondary ion mass spectrometry indicated extracellular solid-phase sequestration of Sr, with at least a portion of the heavy metal associated with carbonate phases.


Assuntos
Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Resposta ao Choque Térmico , Shewanella/efeitos dos fármacos , Estrôncio/farmacologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma , Shewanella/genética , Shewanella/metabolismo , Shewanella/fisiologia , Transcrição Gênica
17.
Appl Opt ; 42(30): 6174-8, 2003 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-14594081

RESUMO

The technique of laser-induced breakdown spectroscopy has been used for the first time to our knowledge for the identification of metals such as palladium and silver that were dispersed in bacterial cellulose membranes. These results for palladium-dispersed films have been correlated to a calibration curve obtained by use of atomic absorption spectroscopy and were found to be in good agreement. The experiments were conducted by use of wet and dry metal-doped membranes. The metal peaks obtained with a dry membrane are greater than five times higher in signal-to-background ratio than when metals are detected by a hydrated membrane. The advantage of this laser-based technique is that minimal sample handling and sample preparation are needed and measurements are completed in real time (a few seconds). Hence this technique can be used for the detection of metals in dry membranes that would be used in the construction of electrode assemblies.


Assuntos
Celulose/análise , Gluconacetobacter xylinus/química , Lasers , Membranas Artificiais , Paládio/análise , Prata/análise , Análise Espectral/métodos , Adsorção , Celulose/química , Estudos de Viabilidade , Temperatura Alta , Paládio/química , Prata/química , Espectrofotometria Atômica/métodos
18.
Appl Opt ; 42(12): 2072-7, 2003 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-12716147

RESUMO

Soils from various sites have been analysed with the laser-induced breakdown spectroscopy (LIBS) technique for total elemental determination of carbon and nitrogen. Results from LIBS have been correlated to a standard laboratory-based technique (sample combustion), and strong linear correlations were obtained for determination of carbon concentrations. The LIBES technique was used on soils before and after acid washing, and the technique appears to be useful for the determination of both organic and inorganic soil carbon. The LIBS technique has the potential to be packaged into a field-deployable instrument.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...